
Cloud Computing Workshop 
June , 2011 

Berkeley, CA 

NOSQL: “Huh? What is it good for?” 

Dan Gunter (dkgunter@lbl.gov) 
Computational Research Division, LBNL 



20
11

 H
P

C
 a

nd
 C

lo
ud

 
C

om
pu

tin
g 

W
or

ks
ho

p 

  About this talk 
◦  It is not “hands-on” (sorry) 
◦  Most of it is history and overview 
◦  It’s about databases, not explicitly “clouds” 

  Why it belongs here 
◦  Cloud computing and scalable databases go 

hand-in-hand 
◦  There are a lot of open-source NOSQL projects 

right now 
◦  Understanding what they do, and what features 

of the commercial implementations they’re 
imitating, gives insight into scalability issues for 
distributed computing in general 
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  Introduction 
 History 
 Theory 
 Technologies 
 Data modeling 
 Conclusions 
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  First: not terribly important or deep in 
meaning 

  But “NOSQL” has gained currency 
◦  Original, and best, meaning: Not Only SQL 
  Wikipedia credits it to Carlo Strozzi in 1998, re-

introduced in 2009 by Eric Evans of Rackspace 
  May use non-SQL, typically simpler, access methods 
  Don’t need to follow all the rules for RDBMS’es 
◦  Lends itself to “No (use of) SQL”, but this is 

misleading 
  Also referred to as “schemaless” databases 
◦  Implies dynamic schema evolution 
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Year

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

 PICK

 M[umps]

 IBM IMS

 ISM  ANSI M

 AT&T DBM
 TDBM
 NDBM

 SDBM

 GT.M

 BerkeleyDB

 Lotus Domino

 GDBM

 Mnesia
 Cache
 Metakit

 Neo4j

 db4o

 QDBM

 Memcached
 Infogrid graph DB

 CouchDB

 Google BigTable
 JackRabbit

 Tokyo Cabinet

 Dynamo

 MongoDB

 Cassandra

 Voldemort

 Dynomite

 Terrastore

 Redis

 Riak

 HBase
 Vertexdb
 Term: NOSQL

Pre-
RDBMS 

RDBMS era NOSQL 
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  Hierarchical storage and sparse multi-
dimensional arrays 

  MUMPS (Massachusetts General 
Hospital Utility Multi-Programming 
System), later ANSI M 
◦  sparse multi-dimensional array 
◦  global variables, prefixed with “^”, are 

automatically persisted: 
 ^Car(“Door”,”Color”) = “Blue” 

  “Pick” OS/database 
◦  everything is hash table 

  IBM Information Management System 
(IMS), [DB1] 

Source: Computer Systems News, 11/28/83 
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  Introduced with E. F. Codd’s 1970 paper “A Relational 
Model of Data for Large Shared Data Banks” 

  Relational algebra provided declarative means of 
reasoning about data sets 

  SQL is loosely based on relational algebra 

A1 ... An 

Value1 ... Valuen 

R 
Relation 
(Table) 

Relation 
variable (Table 
name) 

Attribute (Column) 
{unordered} Heading 

Tuple (Row) 
{unordered} 
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Columnar or 
Extensible record  

Google 
BigTable 

HBase 

Cassandra 

HyperTable 

Graph DB 

Neo4j 

FlockDB 

Infinite-
Graph 

Key/Value Store 

Memcached 

Redis 

Tokyo 
Cabinet 

Dynamo 

Project 
Voldemort 

Dynomite 

Riak 

SimpleDB 

Document Store 

CouchDB 

MongoDB 

Lotus 
Domino 

Mnesia 
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  Global internet companies (Google, Amazon, 
Yahoo!, FaceBook, etc.) hit limitations of 
standard RDBMS solutions for one or more of: 
◦  Extremely high transaction rates 
◦  Dynamic analysis of huge volumes of data  
◦  Rapidly evolving and/or semi-structured data 

  And: these companies – unlike the financial and 
health services industries using M and friends – 
did not see need for “ACID” guarantees 
◦  Didn’t want to run z/OS on mainframes (nutters!) 
◦  “Open world” model, i.e. networks break your $&#! 
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  Introduced by Eric Brewer in a PODC keynote 
on July 2000, thus also known as “Brewer’s 
Theorem” 

  CAP = Consistency, Availability, Partition-
tolerance 
◦  Theorem states that in any “shared data” system, 

i.e. any distributed system, you can have at most 2 
out of 3 of CAP (at the same time) 
◦  This was later proved formally (w/asynchronous 

model) 
Forfeit partition-
tolerance 

Forfeit availability Forfeit consistency 

Single-site databases, 
cluster databases, LDAP  

Distributed databases w/
pessimistic locking, 
majority protocols 

Coda, web caching, DNS, 
Dynamo 

All robust distributed systems live here 
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  RDBMS systems and research focus on ACID:  
Atomicity, Consistency, Isolation, and Durability 

◦  concurrent operations act as if they are serialized 
  Brewer: this is one end of a spectrum, one that 

sacrifices Partition-tolerance and Availability for 
Consistency 

  So, at the other end of the spectrum we have BASE:  
Basically Available Soft-state with Eventual 
consistency 
◦  Stale data may be returned 
◦  Optimistic locking (e.g., versioned writes) 
◦  Simpler, faster, easier evolution 

ACID BASE 
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  Google BigTable 
  Amazon Dynamo 

These implementations 
are not publicly 
available, but the 
distributed-system 
techniques that they 
integrated to build huge 
databases have been 
imitated, to a greater or 
lesser extent, by every 
implementation that 
followed. 
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  Internal Google back-end, scaling to thousands of 
nodes, for 
◦  web indexing, Google Earth, Google Finance 

  Scales to petabytes of data, with highly varied 
data size & latency requirements 

  Data model is (3D) sparse, multi-dimensional, 
sorted map 
(row_key, column_key, timestamp) -> 
string 

  Technologies: 
◦  Google File System, to store data across 1000’s of 

nodes 
  3-level indexing with Tablets 
◦  SSTable for efficient lookup and high throughput 
◦  Distributed locking with Chubby 
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Google’s Bigtable is essentially a massive, distributed 
3-D spreadsheet. It doesn’t do SQL, there is limited 
support for atomic transactions, nor does it support the 
full relational database model. In short, in these and 
other areas, the Google team made design trade-offs to 
enable the scalability and fault-tolerance Google apps 
require. 

- Robin Harris, StorageMojo (blog), 2006-09-08 

Source: http://labs.google.com/papers/bigtable-osdi06.pdf 
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 Chubby is a distributed locking 
service. Requests go the current 
Master. If the Master fails, Paxos is 
used to elect a new one 

Chubby server  

DB 
Chubby server  

DB 

Chubby server  
DB 

Chubby server  
DB 

Each “DB” is a replica 
Each server 
runs on its own 
host 

Chubby server  
DB 

Master 

Google tends 
to run 5 
servers, with 
only one being 
the “master” at 
any one time 
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  Tablets represent contiguous groups of rows 
◦  Automatically split when grow too big 
◦  One “tablet server” holds many tablets 

  3-level indexing scheme similar to B+-tree 
◦  Root tablet -> Metadata tablets -> Data (leaf) tablets 
◦  With 128MB metadata tablets, can addr. 234 leaves 

  Client communicates directly with tablet server, so 
data does not go through root (i.e. locate, then 
transfer) 
◦  Client also caches information 

  Values written to memory, to disk in a commit log; 
periodically dumped into read-only SSTables. 
Better throughput at the expense of some latency 
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  What is a Bloom filter? 
◦  Each element is hashed multiple times 
◦  Constant time: if an element is not in a set  
◦  Can only say “no” with certainty 

  Here, tests if an SSTable has a row/column pair 
◦  NO: Stop 
◦  YES: Need to load & retrieve data anyways 

  Useful optimization in this space.. 

1 1 1 0 0 1 0 1 0 1 0 0 1 0 

 { x,  

w 

y, z } 
w is not in { x, y, z } 
because it hashes to 
one position with a 0 
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  For bookkeeping tasks, Chubby’s replication 
allows tolerance of node failures (P) and 
consistency (C) at the price of availability (A), 
during time to elect a new master and 
synchronize the replicas. 

  Tablets have “relaxed consistency” of 
storage, GFS: 
◦  A single master that maps files to servers 
◦  Multiple replicas of the data 
◦  Versioned writes 
◦  Checksums to detect corruption (with periodic 

handshakes) 
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  Used by Amazon’s “core services”, for very high A 
and P at the price of C (“eventual consistency”) 

  Data is stored and retrieved solely by key (key/value 
store) 

  Techniques used:  
◦  Consistent hashing – for partitioning  
◦  Vector clocks – to allow MVCC and read repairs rather 

than write contention 
◦  Merkle trees—a data structure that can diff large amounts 

of data quickly using a tree of hash values 
◦  Gossip – A decentralized information sharing approach 

that allows clusters to be self-maintaining 
  Old techniques; but not used before at this scale with 

very high reliability constraints 
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Virtual 
node 

Host	
  
“node”	
  

Host	
  
“node”	
  

Virtual 
node 

Virtual 
node 

Virtual 
node 

Virtual 
node 

Virtual 
node 

Virtual 
node 

. 

. 
Hash ring using 
consistent hashing Host	
  

“node”	
  

Virtual 
node 

Virtual 
node 

Virtual 
node 

Virtual 
node 

4 

4 

3 

Item 

Hashes to this spot 

coordinator 
node 

replicas 
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  R = Number of healthy nodes from the preference 
list (roughly, list of “next” nodes on hash ring) 
needed for a read 

  W = Number of healthy nodes from preference list 
needed for a write 

  N = number of replicas of each data item 
  You can tune your performance 
◦  R << N, high read availability 
◦  W << N, high write availability 
◦  R + W > N,  consistent, but sloppy quorum 
◦  R + W < N,  at best, eventual consistency 

  Hinted handoff keeps track of the data “missed” 
by nodes that go down, and updates them when 
they come back online 
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  When things go really bad, 
the “hinted” replicas may 
be lost and nodes may 
need to synchronize their 
replicas 

  To make synchronization 
efficient, all the keys for a 
given virtual node are 
stored in a hash tree or 
Merkle tree which stores 
data at the leaves and 
recursive hashes in the 
nodes 

  Same hash => Same data 
at leaves 

For Dynamo, the “data” are 
the keys stored in a given 
virtual node 

Each node 
is a hash 
of its 
children 

If two top hashes 
match, then the 
trees are the 
same 
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  This ability to be effective at multiple scales is crucial to 
the rise in NOSQL (schemaless) database popularity 

Their whole 
infrastructure is 
dynamic, and 
pieces of it  are 
splitting off and  
growing, and sub-

pieces of  those 
pieces are later 
breaking off and 
also growing larger, 
etc. etc. 

•  Why didn’t Amazon or Google just run a big 
machine with something like GT.M, Vertica, or 
KDB (etc.)? 
•  The answer must be partially to do something 
new, but partially that it wasn’t just shopping carts 
or search 
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Google 
BigTable HBase Cassandra HyperTable 

Neo4j FlockDB InfiniteGraph 

Memcached 

Redis 

Tokyo 
Cabinet 

Dynamo 

Project 
Voldemort 

Dynomite 

Riak 

Ke
y/

Va
lu

e 
St

or
e 

CouchDB 

MongoDB 

Lotus 
Domino 

Mnesia 

D
ocum

ent Store 

Graph 

Columnar or Extensible record  
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  Basic operations are simply 
get, put, and delete 

  All systems can distribute 
keys over nodes 

  Vector clocks are used as in 
Dynamo (or just locks) 

  Replication: common 
  Transactions: not common 
  Multiple storage engines: 

common 

Key/Value Store 

Memcached 

Redis 

Tokyo 
Cabinet 

Dynamo 

Project 
Voldemort 

Dynomite 

Riak 
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  Dynamo-like features: 
◦  Automatic partitioning 

with consistent hashing 
◦  MVCC with vector clocks 
◦  Eventual consistency (N, 

R, and W) 
  Also: 
◦  combines cache with 

storage to avoid sep. 
cache layer 
◦  pluggable storage layer 

  RAM, disk, other.. 

Type	
   Key/Value Store	
  

License	
   Apache 2.0	
  

Language	
   Java	
  

Company	
   Linked-In	
  

Web	
   project-
voldemort.com	
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  Dynamo-like 
features: 
◦  Consistent hashing 
◦  MVCC with vector 

clocks 
◦  Eventual consistency 

(N, R, and W) 
  Also: 
◦  Hadoop-like M/R 

queries in either JS or 
Erlang  
◦  REST access API 

result = self.client 
   .add(bucket.get_name()) 

   .map(“Riak.mapValuesJson”)  

   .reduce(“Riak.reduceSum”) 

   .run() 

Type Key/Value Store 

License Open-Source 

Language Erlang 

Company Basho 

Web wiki.basho.com/
display/RIAK/Riak/ 

Map/reduce with the Python API 
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  All share BigTable data 
model 
◦  rows and columns 
◦  “column families” that can 

have new columns added 
  Consistency models vary: 
◦  MVCC 
◦  distributed locking 

  Need to run on a different 
back-end than BigTable 
(GFS ain’t for sale) 

Columnar or 
Extensible record  

Google 
BigTable 

HBase 

Cassandra 

HyperTable 
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Type	
   Extensible column 
store	
  

License	
   Apache 2.0	
  

Language	
   Java	
  

Company	
   Apache Software 
Foundation	
  

Web	
   cassandra.apache.org	
  

Widely used: Facebook, 
Twitter, Digg, Reddit, 
Rackspace 

•  Marriage of BigTable 
and Dynamo  
– Consistent hashing 
– Structured values 
– Columns / column families 
– Slicing with predicates 
– Tunable consistency: 

– W = 0, Any, 1, Quorum, All 
– R = 1, Quorum, All 

– Write commit log, 
memtable, and uses 
SSTables 
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  Store objects 
◦  not really documents; think: 

nested maps 
  Varying degrees of 

consistency, but not ACID 
  Allow queries on data contents 

(M/R or other) 
  May provide atomic read-and-

set operations 

SimpleDB 

Document Store 

CouchDB 

MongoDB 

Lotus 
Domino 
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Type	
   Document store	
  

License	
   Apache 2.0	
  

Language	
   Erlang	
  

Company	
   Apache Software 
Foundation	
  

Web	
   couchdb.org	
  

•  Objects are grouped in 
“collections” 

•  REST API 
•  Elegant, but slow 

•  Read scalability through 
async. replication with 
eventual consistency 

•  No sharding 
•  Incrementally updated 

MR “views” 
•  ACID? Uses MVCC and 

flush on commit. So, 
kinda.. 
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Type	
   Document 
store	
  

License	
   GPL	
  

Language	
   C++	
  

Company	
   10gen	
  

Web	
   mongodb.org	
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Type	
   Document store	
  

License	
   EPL*	
  

Language	
   Erlang	
  

Company	
   Ericsson	
  

Web	
   www.erlang.org	
  

Papers	
   http://www.erlang.se/
publications/
mnesia_overview.pdf	
  

* Mozilla Public License 
modified to conform with laws of 
Sweden (more                        ) 

•  Stores data in “tables” 
•  Data stored in memory 
•  Logged to selected disks  

•  Replication and sharding 
•  Queries are performed 

using Erlang list 
comprehensions (?!) 

•  User-defined indexes on 
fields of the objects 

•  Transactions are supported 
(but optional) 

•  Optimizing query compiler 
and dynamic “rule” 
tables 

•  Embedded in Erlang OTP 
platform (similar to Pick) 
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  Tough, since the whole point of NOSQL 
databases is to not be a one-size-fits-all 
solution 
◦  e.g., Hard to quantify different styles of 

consistency 
 Yahoo Cloud-Serving Benchmark 
◦  http://research.yahoo.com/node/3202 

 Do not fool yourself that scalability is 
going to be magically easy 
◦  “MongoDB is web scale”: http://

www.youtube.com/watch?v=b2F-DItXtZs 
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http://labs.mudynamics.com/2010/04/01/why-nosql-is-bad-for-startups/ 

I remember having late night meetings about 
tables, normalization and migration and how 
best to represent the data we have for each 
packet capture. For a startup, these kinds 
of late night meetings are critical in 
establishing a bond amongst the engineers 
who are just learning to work with each 
other. NoSQL destroys this human aspect in a 
number of ways.
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 Consider semi-structured input like: 
ts     = 2010-02-20T23:14:06Z 
event  = job.state 
wf_uuid= 8bae72f2-etc 
state  = JOB_SUCCESS 
name   = create_dir_montage 
job_submit_seq=1 

•  If the fields are likely to change*, or new 
types of data will appear, how to model 
this kind of data? 
1.  Blob 
2.  Placeholders 
3.  Entity-Attribute-Value 

RDBMS  
“anti-patterns” 

* In the year since I first 
wrote this slide, they 
changed! 
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  It’s terrible, trust me: I tried it 
  You end up with queries that look like this to just extract 

a bunch of fields that started out in the same log line: 

select e.time, user.value user, 
host.value host, dest.value dest,  
       nbytes.value nbytes, dur.value 
dur, type.value type  
from event e  
join attr user on e.id = user.e_id  
join attr host on e.id = host.e_id  
join attr dest on e.id = dest.e_id  
join attr nbytes on e.id = 
nbytes.e_id  
join attr dur on e.id = dur.e_id 
join attr type on e.id = type.e_id 

join attr code on e.id = code.e_id 
where 
e.name = 'FTP_INFO' 
and host.name = 'host' 
and dest.name = 'dest' 
and nbytes.name = 'nbytes' 
and dur.name = 'dur' 
and type.name = 'type' 
and user.name = 'user' 
and (code.name = 'code' and 
code.value = '226') 



20
11

 H
P

C
 a

nd
 C

lo
ud

 
C

om
pu

tin
g 

W
or

ks
ho

p 



20
11

 H
P

C
 a

nd
 C

lo
ud

 
C

om
pu

tin
g 

W
or

ks
ho

p 

 Yes, Erlang 

 And Map/Reduce 

query [E.name || E <- table(employee), 
                 E.sex = female] 
end 

function(doc) { 
    if (doc.last_name) { 
        emit(doc.last_name, doc); 
    } 
} 
function find_users_whose_last_names_start_with(db, query) { 
    var matches; 
    matches = db.view('users/last_names', 
                      { startkey: query, 
                        endkey:   query + "\u9999" }); 
    return matches.rows.map(dot('value')); 
} 
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  ..and JSON (MongoDB) 

 all the key/value stores 
 PIG (see tutorial!) 
 etc. 

  Is there any way this can be unified? 
◦ Why would one want to do that? 

{last_name: 'Smith'}, {'ssn': 1} 
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SQL 
  Children point to parents 
  Closed world 
  Entities have identity 

(extensional) 
  Necessarily strongly typed 
  Synchronous (ACID) updates 

across multiple rows 
  Environment coordinates 

changes (transactions) 
  Value-based, strong reference 

(referentially consistent) 
  Not compositional 
  Query optimizer 

co-SQL 
  Parents point to children 
  Open world 
  Environment determines identity 

(intensional) 
  Potentially dynamically typed 
  Asynchronous (BASE) updates 

within single values 
  Entities responsible to react to 

changes (eventually consistent) 
  Computation-based, weak reference 

(expect 404) 
  Compositional 
  developer/pattern 

Source: A Co-Relational Model for Large Shared Data Banks 
DOI:10.1145/1924421.1924436 
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  You need to think about this going in; you are 
throwing away much of the elegance of 
relational query optimization 
◦  need to weigh against costs of static schemata 

  Holistic approach: 
◦  Spend lots of time on logical model, understand 

problem! 
◦  What degree of normalization makes sense? 
◦  Is your data well-represented as a hash table? Is 

it hierarchical? Graph-like? 
◦  What degree of consistency do you really need? 

Or maybe multiple ones? 
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 Use MongoDB for: 
◦  Input data (materials) 
◦ Queue manager 
◦ Provenance 
◦ Output data (calculated energies) 

 Moved from MySQL database with 
tons of tables requiring tons of joins 

 Use de-normalized Mongo schema 
◦  queries got considerably simpler 
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  Every crystal that has (Li or Na or K), (Mn), (O or S or F or 
Si), plus one other element except (Zn or Ni or Fe or Cu or 
Co or Br or Re or Y) (nelements = 4) with volume less than 
X, Mn has oxidation state 3+, Mn has 6-fold coordination, 
and crystal system is monoclinic. X = 500 'wyckoff' is a 
proxy for 6-fold coordination, oxidation state 

{ "space_group.crystal_system" : "monoclinic", 
"lattice.volume" : { "$lt" : 500 }, 
"element_names" : {"$all" : ['Mn'],"$size" : 4}, 
"atoms" : { "$elemMatch" : { "oxidation" : 3 } }, 
"$where" : "match_all( 
this.element_names, ['Li', 'Na', 'K'], ['Mn'], ['O', 
'S', 'F', 'Si'])”, 
element.names : { “$nin” ['Zn', 'Ni', 'Fe', 'Cu', 
'Co', 'Br', 'Re', 'Y’]} } 
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  Anyone who says RDBMS is dead 
    (and means it) is an idiot 
  SQL is mostly a red herring 
◦  Can be layered on top of NOSQL, e.g. BigQuery and Hive 
◦  Ad-hoc joins? Really? 

  What’s really interesting about NOSQL is scalability 
(given relaxed consistency) and flexibility 
◦  incremental scalability from local disk to large degrees of 

parallelism in the face of distributed failure 
◦  easier schema evolution, esp. important at the 
“development” phase, which is often longer than anyone 
wants to admit 

  Whether we should move towards the One True 
Database or a Unix-like ecosystem of tools is mostly a 
matter of philosophical bent; certainly both directions 
hold promise 
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  Cattell’s overview of “scalable datastores” 
◦  http://cattell.net/datastores/ 

  BigTable 
◦  http://labs.google.com/papers/bigtable.html 

  Stonebraker et al. on columnar vs. map/reduce 
◦  http://database.cs.brown.edu/sigmod09/benchmarks-

sigmod09.pdf 
  NOSQL “summer reading”: http://nosqlsummer.org/ 
◦  “path throgh them”: http://doubleclix.wordpress.com/

2010/06/12/a-path-throug-nosql-summer-reading/ 
  Varley’s Master’s Thesis on non-relational db’s 

(modeling) 
◦  http://ianvarley.com/UT/MR/

Varley_MastersReport_Full_2009-08-07.pdf 
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 Database for RabbitMQ (distributed 
messaging behind S3) 

 Erlang seems to be gaining a 
popularity in the distributed-computing 
space 

 Mmm.. tasty! 


